
26 informatics.nic.in April 2011

Technology Update

ER. NILADRI B.
MOHANTY

Scientific Officer
NIC Peren

niladri.mohanty@nic.in   

ASHOK KU. HOTA
Technical Director
NIC Orissa
ak.hota@nic.in 

OBJECT Oriented
Programming (OOP)
has created a revolu-

tion by simplifying the computing
problems through visualization of a
system as a group of entities and
interaction between those entities.
But this revolutionary model is very
static in nature and any changes in
the requirement regarding the secu-
rity, logging or exception handling
can seriously affect the development
timeline. In the OOP many classes
and methods used to contain some
codes, which are not the primary
responsibility of that class/method.
These kinds of codes are used to be
called as tangle codes. 
For Example: In an e-Governance
application, one form has been devel-
oped to take employee code as an
input and produce the service book
of the employee with options to print
and send through e-mail. In this
application the class
"get_emp_details" supposed to be
responsible for only to process the
input i.e. employee code and provide
the output. But due to the static
nature of OOP the class is
forced to sanitize the
input from malicious
character to avoid Sql
Injection attack, call the
"print()" method of
another class to print the
service book as well as
calls the "send_mail()"
method to send service
book through e-mail.
These extra codes are
called as tangles codes
and their entry points are
called as cross cuts. This
kind of codes actually
dilutes the real concepts

of modularity. In this case, the pri-
mary responsibility of the class
"get_emp_details" is to fetch the
service book from database by taking
the employee code as input. The sec-
ondary responsibility is to sanitize
input parameters and call "print()" as
well as "send_mail()" methods. 

The additional codes required to
fulfill the secondary responsibility of
the "get_emp_details" class can be
kept in a single location rather than
its redundant use by different classes
at different time. To complement the
OOP, Aspect Oriented Programming
(AOP) allows the developer to
dynamically modify the static Object
Oriented Model to create a system
that can grow as and when new
requirement arrives.

"Aspect Oriented Programming is a
methodology to separate cross cut
code across different modules in a
software system."

AOP provides the solution for
Tangle Codes by separating primary
codes and secondary codes in sepa-
rate modules and then feed both the
modules to the compiler. AOP does
not replace existing programming

There are already a lot of

robust programming

methodologies like "Object

Oriented Programming",

"Procedural Programming"

and "Distributed OOP". So, is

it really a necessity to have

another programming

methodology named "Aspect

Oriented Programming"? Is

"Aspect Oriented

Programming" is a

substitute for "Object

Oriented Programming"?

What is an aspect? Many

questions come in mind and

the mystery gets more

puzzled when Googling in

the internet.This article

gives a brief idea of this

new programming paradigm

coined by Gregor Kiczales.

Aspect Oriented Programming

public void get_det(empcode as string)
{

Cls_security sec = new Cls_security (empcode);
Sempcode =sec.sanitize();
/////////////////////////////////////////
// This method fetches the service book
//
// Adding code will go here
////////////////////////////////////////
// After fetching from database email is sent
Cls_Email Obj_email = new Cls_Email ();
Obj_email.Send ();
// After sending email its printed
Cls_Print Obj_Print = new Cls_Print();
Obj_Print.Print();

}

Primary
Code

Secondary
codes/Tangle
Code
-This Dilute
the core
responsibility
of the method



paradigms and languages; instead, it
works with them to improve their
expressiveness and utility. It enhances
our ability to express the separation of
concerns, necessary for a well-
designed, maintainable software sys-
tem. AOP supported compilers gener-
ates single executable module after the
compilation of the both Primary & sec-
ondary codes. This process of compil-
ing core and cross cut concern togeth-
er by the AOP supported compiler is to
be known as weaving.

Types of AOP Compilers
Compile Time Weaving: In this 
weaving the core concern 
(Primary code) and cross cutting 
concern (Secondary code) is 
weaved by the AOP compiler at 
compile time and then feed in to 
the main compiler.
Link time Weaving: 
This type of AOP compiler 
should weave the core concern and 
cross cutting concern after the gen-
eration of intermediate code at the 
linker level.
Run time Weaving: Here the core 
concern and cross cutting concern 
are used to be detected and execut-
ed at run time. 

Terminologies used in AOP
Cross cuts: A program logic is used to
be consists of many distinct parts
called as concerns. Few methodologies
like procedures, modules and classes
are used to separate, group and encap-
sulate different concerns of the pro-

gram logic. Still there
are some kinds of con-
cerns which are not fea-
sible to be implemented
through the above men-
tioned methodology as
this concern cuts across
multiple abstraction in a
program. Logging exem-
plifies a crosscutting
concern because a log-
ging strategy necessarily
affects every logged part
of the system. Logging

thereby crosscuts all logged classes
and methods. Exception Handling,
Security and fault tolerance codes may
also be considered as crosscutting con-
cerns in the core module. 

Advice: The "advice" is an extra code
required to fulfill the secondary
requirements of the existing model.
Code to implement logging, security,
exception handling etc. can be consid-
ered as an advice in the perspective of
AOP. It defines what needs to be
applied and when in a particular sys-
tem. In AOP there are different types
of Advice as Before Advice, After
Advice, Around Advice and Throws
Advice.

Joint Points: These are the points
before and after the method execution
where the Advice needs to be applied.
This is the term given to the point of
execution in the application at which
c ro s s - c u t t i n g
concern needs to
be applied. The
combination of
different 'Joint
points' where the
advice need to be
applied  is called
'Point cuts'. 

Aspect: Aspect
is the combina-
tion of Pointcuts
and Advice. In a
better way it can
be said that, the

act of appling Advice at the "Point
Cuts" is called Aspect.

In the context of above "employee
module" implementation, let us see
the logging features through AOP
based approach.

Security code, exception handling,
Self Healing System implementation,
fault tolerance codes, logging features
etc are becoming more and more pop-
ular in today's software development
to achieve quality, security and robust-
ness in the software. The AOP concept
has given an opportunity for the devel-
oper to adopt a modular release
approach for the software and make
the application "attack proof" with out
changing the core classes repeatedly.
As realists, we acknowledge that no
one process, technique, language, or
platform is good for all situations and
AOP is not out of the box. Specifically
AOP may not be suitable when code
review is extensively in used for securi-
ty audit and other testing purposes as,
we do not know whether the code
might be either augmented by an
advice from some aspect or completely
replaced by such advice at runtime. To
be able to reason about an applica-
tion's code, we must be able to look at
the code from each class as well as the
code for any aspects that might affect
the class's behavior. However the AOP
is a best tool for migration of a legacy
system and modify their existing func-
tionalities without affecting their core
codes so much. 

April 2011 informatics.nic.in 27

Technology Update

public aspect EmployeeChangeLogger { pointcut 

employeeUpdates(Employee e) : call( public void 

Employee.update*Info()) && target(e); 

pointcut employeeFinanceUpdates(Employee e) :

call( public void update*Info(Employee)) && 

args(e); 

after(Employee e) returning : 

employeeUpdates(e) || employeeFinanceUpdates(e) 

{ System.out.println("\t>Employee : " 

+e.getName() + " has had a change "); 

System.out.println("\t>Changed by " + 

thisJoinPoint.getSignature()); } }

Pont 
cuts 

Pont 
cuts 

Advice

Aspect

AOP Based
compiler doing
weaving

Employee  module
implementing security,
Print, Email 
functionalities 

WEAVER

Employee Module
(AOP Based Approach)

Cls_security
(sanitize Method)

get_emp_details
(get _det Method)

Cls_Email
(send Method)

Cls_Print
(Print Method)




